@ Carleton

UNIVERSITY

Canada’s Capital University

Host-Based Anomaly Detection
with Extended BPF

William Findlay

Supervisor: Dr. Anil Somayaji
April 10%, 2020

& Carleton eBPF at a High Level

< UNIVERSITY

Canada'’s Capital University

¢ Inject user-specified code into the kernel

¢ BPF code runs in kernelspace, can
Instrument essentially all system behavior

* This sounds a lot like a kernel module...
> Key difference? Safety.

¢+ Before they can run in the kernel, BPF
programs are statically verified

& Carleton eBPF in Industry

/7 UNIVERSITY

Canada'’s Capital University

¢ Performance monitoring
> Netflix
> Facebook
> Google
> ... many others

¢ Established tools
> bcc-tools (over 100 performance monitoring / visibility tools)

* Network security
> Cloudflare’s DDoS mitigation stack

% Carleton What Makes eBPF Good for Security?

/7 UNIVERSITY

Canada'’s Capital University

* A lot of security is about what we can see
> eBPF lets you see everything about your system

» ... and it can do this with crazy low overhead
¢ Before eBPF, system introspection

came at a cost
> Speed
> Scope
> Production safety
¢+ eBPF can do everything, without the

speed | scope | safety trade-off
> Although eBPF comes with its own nuances (more on this later)

& Carleton eBPF Architecture

UNIVERSITY

Canada'’s Capital University

Direct Map Access
<

Userspace
Program

Generate

Reiect USDT,
elec BPF uprobes User Functions,
Bytecode > Data Structures
Userspace
Kernelspace .
v \ 4 \ 4 tracepoints, K IE i
- _ _ - kprobes ernel Functions,
Verifier Map ji Map j| Map L Data Structures

JIT Instrument | perf events (Hardware Performance
Compiler - Counters
BPF Virtual Machine XDP Direct Packet
Unsafe > Access
socket filters
. . . > Sockets
Figure 1: eBPF architecture in a nutshell. »

Note that the list of program types is not exhaustive.

& Carleton The Verifier in Detail

UNIVERSITY

Canada'’s Capital University

¢ eBPF verifier
> Ensure BPF program will not crash the kernel
> 10,000 lines of C code in kernel
> BPF system call traps to verifier on PROG_LOAD

¢ How to guarantee safety?

Limitations + simulation + static analysis
> 512 byte stack space
> No unbounded loops

» Max 1 million BPF instructions per program

> No buffer access with unbounded induction variable

> Etc.

& Carleton BPF Programs Still Can Be Complex

UNIVERSITY

Canada'’s Capital University

¢ ebpH’s sys_exit tracepoint
> bpftool + graphviz osage
> 1,574 BPF instructions

» 1,930 machine
instructions

¢ BPF programs can
interact with each other

> Direct map access
> Tail calls

Flgure 2 Instructlon flow graph of epr S Sys_exit tracepoint.

& Carleton Process Homeostasis

-~ UNIVERSITY

Canada'’s Capital University

¢ Early anomaly detection system by
Anil Somayaji

* The idea:

> Instrument system calls to build per-executable
behavioral profiles

> Delay anomalous system calls proportionally to recent anomalies

* Problems?
> Implemented as a kernel patch
> Need to make crazy modifications for it to work
> Patch the scheduler, write in assembly language, etc.
> Not production-safe
> Not portable

&= Carleton ebpH: Back to the Future

UNIVERSITY

Canada'’s Capital University

¢ ebpH
> “Extended BPF + Process Homeostasis”
> 20 year old technology...
> Re-written using modern technology

Table 1: Comparing ebpH and pH.

= .
o v 3
< E E T 5E 8 8
T E 2= &35 5 3
T 28 28 g2 £ 7
. o = o - o - [ab] fah}
System Implementation A Akt AC A0 A m
pH Kernel Patch X X v v v /
ebpH eBPF + Userspace Daemon v X v v oo X

& Carleton ebpH: Back to the Future

UNIVERSITY

Canada'’s Capital University

¢ ebpH
> “Extended BPF + Process Homeostasis”
> 20 year old technology...
> Re-written using modern technology

Table 1: Comparing ebpH and pH.

= .
@] o) = 3
2 2 == &= % g
T 28 28 g2 £ 7
. o = o - o - [ab] fah}
System Implementation A Akt AC A0 A m
pH Kernel Patch v v v /
ebpH eBPF + Userspace Daemon X v v o X

&= Carleton ebpH: Back to the Future

UNIVERSITY

Canada'’s Capital University

¢ ebpH
> “Extended BPF + Process Homeostasis”
> 20 year old technology...
> Re-written using modern technology

Table 1: Comparing ebpH and pH.

= .

@] e 3

s E¥3 5% E ¢

= 5 - = A a5 3

L o = s-u O o)

T 3L 2L QL o= 7

. o = o - o - [ab] fah}

System Implementation A Akt AC A0 A m
pH Kernel Patch X X v v
ebpH eBPF + Userspace Daemon v v v

& Carleton ebpH in Detail

UNIVERSITY

Canada'’s Capital University

binary = Is
(curr, prev) = (read, close)

(a) ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ’
curr farther curr closer
from prev to prev
close

Least Recent

(b)

close

v Most Recent

Figure 3: Example (read, close) lookahead pair from Is.

Same idea as pH:
¢ Trace system calls

¢ Build profile of
lookahead pairs

¢ Gather enough data

¢+ Flag new lookahead
pairs as anomalies

eBPF makes this safe.

% Carleton How ebpH Collects Data

UNIVERSITY

Canada'’s Capital University

¢ Tracepoints (static kernel tracing)

> Instrument system calls
> Instrument scheduler

¢ Kprobes (dynamic kernel tracing)
> Instrument signal delivery

¢ Uprobes (dynamic user tracing)

> Instrument libebph.so
> Allow user to issue commands to ebpH’s BPF programs

j Carleton ebpH Architecture

UNIVERSITY

Canada'’s Capital University

ebph-admin '
Event Loo Hashmaps Pgrl: E:;m
Requests
: L
L R
UNIX Stream Daemen '
Socket '
: Maps
Requests Profile Data Update Yy
Lookup, Update
, h 4
BPF Programs
Save Load 1
. f a
\4 E
ebpH . - Kprobes,
Logs UL L L Kretprobes
Profile Storage
; Kernel R Kernel
' Data Data
i 3 System Calls
Various Userland ‘ > Kernel Functions

Processes

Figure 4: ebpH architecture in a nutshell.

& Carleton Performance Analysis

UNIVERSITY

Canada'’s Capital University

¢ How does ebpH overhead compare
with pH?

¢+ Benchmarks

> Imbench OS suite (micro)
= System call overhead
2 Process creation overhead
2 |PC overhead (signals, UDS, pipes)
> Kernel compilation benchmarks (micro)
2 How does ebpH perform on real tasks?
> bpfbench (macro, ad-hoc)
2 Real world system call overhead
= Most frequent system calls in practice

¥ Carleton Performance Analysis

UNIVERSITY

Canada'’s Capital University

Table 2: Systems used for benchmarking tests.

System Description Specifications

Kernel 5.5.10-archl-1
CPU Intel i7-7700K (8) @ 4.500GHz

arch Personal workstation
GPU NVIDIA GeForce GTX 1070
RAM 16GB DDR4 3000MT/s
Disk 1TB Samsung NVMe M.2 SSD
Kernel 5.3.0-42-generic
bronte CCSL workstation CPU AMD Ryzen 7 1700 (16) @ 3.000GHz

GPU AMD Radeon RX

RAM 32GB DDR4 1200MT/s

Disk 250GB Samsung SATA SSD 850
Kernel 5.3.0-42-generic

CPU Intel i7-3615QM (8) @ 2.300GHz
GPU Integrated

RAM 16GB DDR3 1600MT /s

Disk 500GB Crucial CT525MX3

homeostasis Mediawiki server

& Carleton

UNIVERSITY

Canada'’s Capital University

Imbench Results

Figure 5: System call overheads.

- pr

¢ Short system calls

> getppid(2): 614% overhead
2 Almost no
kernelspace runtime

> stat(2): 65% overhead

= More significant
kernelspace runtime

us)

o

v

getppid

=
2
g
5]

System Call

Figure 6: Various select(2) system call overheads.

¢ Long system calls
> select(2)
> As high as 99%
> But as low as 2%

Time (us)

== ebpH

20

15

10

5

P =l II
o
=

*Error bars show standard error.

&= Carleton Imbench Results

UNIVERSITY

Canada'’s Capital University

L 4 Process Creati on Figure 7: Process creation latency results.

Least to most complex.

> fork+exit: oo = 52
2 2.7% overhead 1400
> fork+execve: o
= 8.1% overhead ‘:1:2
> fork+/bin/sh -c: " oo
= 10% overhead 400 II
b L

Process

fork+exit
fork+execve
fork+/bin/sh -c

*Error bars show standard error.

& Carleton Kernel Compilation Results

UNIVERSITY

Canada'’s Capital University

¢ Kernel compilation
> CPU-intensive task

Table 3: ebpH kernel compilation overheads.

> A |0t Of UserSpace tlme Tests were run using 16 logical cores.
> . Category se (8) Tebpr (8) Diff. (s) % Overhead
St”l many SyStem Ca”S System 1525.412 (1.7603) 1687.833 (8.0621) 162.421667 10.647727
User 12333.737 (27.8529) 12370.957 (4.1244) 37.220000 0.301774
> Over l 76 m[”[on Elapsed 915.173 (3.9876) 924.032 (1.1194) 8.858333 0.967940
¢ epr pe rforms Table 4: Original pH kernel compilation overheads.
Time Category | Standard (s) pH (s) % Increase
rem arkably We" here wser 728.92 (0.74) | 733.00 (0.17) 0.57%
system 58.19 (0.80) | 80.34 (0.17) 38.06%
elapsed 798.65 (0.87) | 825.18 (1.75) 3.32%

> 10% kernelspace overhead
> 0.3% userspace overhead
> under 1% real overhead

*Standard deviations in parentheses.

&= Carleton bpfbench Results

/7 UNIVERSITY

Canada'’s Capital University

¢ Looked at top 20 system calls by count

from three datasets

> arch (personal use)

> bronte (idle)

> homeostasis (production use)
* Most frequent system calls have acceptable

overhead

> Anywhere from about 5% to about 150%
¢ Idle system reported significantly more

overhead than the other two
> Lower overhead when it actually matters

& Carleton Performance Summary

UNIVERSITY

Canada'’s Capital University

¢ ebpH imposes significant overhead on

some system calls

> But this is not the whole story
2 Longer system calls means less overhead
= System call overhead # overall impact

¢ Impact on most frequent system calls can
be much lower in practice

¢ ebpH does very well on real tasks
> In some cases better than the original pH
> Slowdown is mostly imperceptible in practice

&= Carleton Responding to Attacks with eBPF

UNIVERSITY

Canada'’s Capital University

* bpf_signal
> Real-time signals from kernelspace (instantaneously)
» SIGKILL, SIGSTOP, SIGCONT... you name it
> Linux 5.3

* bpf_signal_thread
> Like bpf_signal but target a specific thread
> Linux 5.5

* bpf_override_return
> Targeted error injection
> Whitelisted kernel functions only :(
> Linux 4.16

@ Carleton Future Work: Responding to Attacks

" UNIVERSITY

Canada'’s Capital University

¢ Add system call delays
> bpf_signal - send SIGSTOP and SIGCONT for delays

¢ Add execve abortion
> bpf_override_return - target execve implementation

Table 1A: Adding response to ebpH.

= .

S D ,

=5 ETEF E ¢

2 5 =22 af B 8

S T = . =2 A

o oE B Y B Y £ 97

. o = © o -~ o - [})

System Implementation A A A0 A0 A x
pH Kernel Patch X X v v v
ebpH eBPF + Userspace Daemon v X v v

% Carleton Future Work: Saving on Memory Overhead

UNIVERSITY

Canada'’s Capital University

¢ Current map allocation is too granular
> One big map for profiles, one big map for processes

¢ Solution: use new map types
> LRU_HASH - smaller map, discard least recently used entries
> HASH_OF_MAPS - nested maps for lookahead pairs (sparse array)

Table 1B: Fixing ebpH’s memory overhead.

= .
S - ,
=2 ETEF £ %
= = -2 AL a B 3
S © = . = D &
o o0k 2L 29 = @
. o = © o -~ o - [})
System Implementation A A A0 A0 A x
pH Kernel Patch X X v v /
ebpH eBPF + Userspace Daemon v v

Cal‘le’[OIl What Other Security Problems Can We Solve with eBPF?

"~ UNIVERSITY

Canada'’s Capital University

¢ Anomaly detection

> Add more sources of data?
> No reason to stop at system calls

¢ DDoS mitigation
> Cloudflare is doing this with eBPF/XDP

* Increasing visibility of attacks /| misuse
> ebpH does a bit of this

> bcc tools are great for this
2 e.g. capable(8), eperm(8), setuids(8), execsnoop(8), etc.

Cal"le’[OIl What Other Security Problems Can We Solve with eBPF?

. UNIVERSITY

Canada'’s Capital University

¢ Sandboxing?

> Externally enforcing seccomp rules with eBPF?
> bpf_signal could do this easily

¢ Name something you want to trace

> eBPF cando it
> And it can do it safely and with excellent performance

¢ ebpH is just the beginning

> Uses a small fraction of eBPF’s capabilities

% Carleton Conclusion

Canada'’s Capital University

* ebpH:

> is as fast as the original implementation

> supports most of the original functionality

> can be made even better, using new eBPF features
* Future of ebpH?

> Ecosystem of BPF programs

> All talking to each other, sharing information about diff. parts of system
> Beyond just system call tracing

¢ Future of eBPF in OS security?

> We are going to be seeing a lot more of this
> eBPF keeps getting better and better

> Replacing many in-kernel implementations with something safer,
with less opportunity cost

& Carleton Some Links

d UNIVERSITY

Canada'’s Capital University

https://github.coml/iovisor/bcc
https:/Igithub.com/willfindlay/honors-thesis
https:/Igithub.com/willfindlay/ebph

PRs welcome!

Thank youl!

https://github.com/iovisor/bcc
https://github.com/willfindlay/honors-thesis
https://github.com/willfindlay/ebph

